Friday 17 February 2017

Bewegungs Durchschnitt Saison Index

Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Moving Average - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Ein 10-Tage-MA würde die Schlusskurse ausgleichen Für die ersten 10 Tage als erster Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis fallen lassen, den Preis am Tag 11 hinzufügen und den Durchschnitt nehmen, und so weiter wie unten gezeigt. Wie bereits erwähnt, verbleiben MAs die derzeitige Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA ein viel größeres Maß an Verzögerung haben als ein 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der MA zu verwenden hängt von den Handelszielen ab, wobei kürzere MAs für kurzfristige Handels - und längerfristige MAs für langfristige Investoren besser geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Handelssignale. MAs vermitteln auch eigene Handelssignale, oder wenn zwei Durchschnitte kreuzen. Eine aufsteigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend ist. Während eine abnehmende MA anzeigt, dass es sich in einem Abwärtstrend befindet. Ebenso wird die Aufwärtsbewegung mit einem bullish Crossover bestätigt. Die auftritt, wenn ein kurzfristiges MA über einen längerfristigen MA kreuzt. Abwärts-Impuls wird mit einem bärigen Crossover bestätigt, der auftritt, wenn ein kurzfristiger MA unterhalb eines längerfristigen MA übergeht. Spreadsheet Implementierung von saisonalen Anpassung und exponentieller Glättung Es ist einfach, saisonale Anpassung durchzuführen und exponentielle Glättungsmodelle mit Excel zu platzieren. Die Bildschirmbilder und - diagramme werden aus einer Tabellenkalkulation entnommen, die eingerichtet wurde, um multiplikative saisonale Anpassung und lineare exponentielle Glättung auf den folgenden vierteljährlichen Verkaufsdaten von Outboard Marine zu veranschaulichen: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für die Demonstration verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es gibt nur eine Glättungskonstante zu optimieren. Normalerweise ist es besser, Holt8217s Version zu verwenden, die getrennte Glättungskonstanten für Niveau und Tendenz hat. Der Prognoseprozess verläuft wie folgt: (i) Zuerst werden die Daten saisonbereinigt (ii) dann werden die Prognosen für die saisonbereinigten Daten über lineare exponentielle Glättung erzeugt und (iii) schließlich werden die saisonbereinigten Prognosen quittiert, um Prognosen für die ursprüngliche Serie zu erhalten . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt der saisonalen Anpassung besteht darin, einen zentrierten gleitenden Durchschnitt zu berechnen (hier in Spalte D durchgeführt). Dies kann getan werden, indem man den Durchschnitt von zwei einjährigen Mittelwerten annimmt, die um eine Periode relativ zueinander versetzt sind. (Eine Kombination von zwei Offset-Mittelwerten anstatt ein einzelner Durchschnitt wird für Zentrierungszwecke benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt ist, das Verhältnis zum gleitenden Durchschnitt zu berechnen - i. e. Die ursprünglichen Daten geteilt durch den gleitenden Durchschnitt in jeder Periode - die hier in Spalte E durchgeführt wird. Dies wird auch als quottrend-Zyklusquote des Musters bezeichnet, insofern als Trend - und Konjunktureffekte als all das betrachtet werden könnten Bleibt nach der Wertung über einen ganzen Jahr Wert von Daten. Natürlich, Monate-zu-Monat-Änderungen, die nicht aufgrund der Saisonalität könnte durch viele andere Faktoren bestimmt werden, aber die 12-Monats-Durchschnitt glättet über sie zu einem großen Teil Der geschätzte saisonale Index für jede Saison wird berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel durchgeführt wird. Die Durchschnittsverhältnisse werden dann neu skaliert, so dass sie zu genau 100mal die Anzahl der Perioden in einer Jahreszeit oder 400 in diesem Fall, die in den Zellen H3-H6 durchgeführt wird, summieren. Unterhalb der Spalte F werden die VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es darstellt. Der zentrierte gleitende Durchschnitt und die saisonbereinigten Daten scheinen so auszusehen: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in der gleichen Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten, beginnend in Spalte G. Ein Wert für die Glättungskonstante (alpha) wird über der Prognosespalte (hier in Zelle H9) und eingetragen Zur Bequemlichkeit erhält man den Bereichsnamen quotAlpha. quot (Der Name wird mit dem Befehl quotInsertNameCreatequot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die Formel, die hier für die LES-Prognose verwendet wird, ist die reine rekursive Form des Brown8217s-Modells: Diese Formel wird in die Zelle eingegeben, die der dritten Periode entspricht (hier Zelle H15) und von dort aus kopiert wird. Beachten Sie, dass die LES-Prognose für die aktuelle Periode auf die beiden vorhergehenden Beobachtungen und die beiden vorangegangenen Prognosefehler sowie auf den Wert von alpha bezieht. So bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich, wenn wir einfach anstelle einer linearen exponentiellen Glättung verwenden wollten, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln benötigt, um das Level und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen aus den Istwerten berechnet. Der Wurzel-Mittelquadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Dies folgt aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)) 2) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, weil das Modell eigentlich nicht mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können den quotSolverquot verwenden, um eine exakte Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier gezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu skizzieren und auch zu berechnen und ihre Autokorrelationen bei Verzögerungen von bis zu einer Saison zu zeichnen. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit der CORREL () - Funktion berechnet, um die Korrelationen der Fehler mit sich selbst zu berechnen, die von einer oder mehreren Perioden verzögert sind - Details werden im Tabellenkalkulationsmodell angezeigt . Hier ist eine Handlung der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas lästig - es deutet darauf hin, dass die Der saisonale Anpassungsprozess war nicht ganz erfolgreich. Allerdings ist es eigentlich nur geringfügig signifikant. 95 Signifikanzbänder zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind etwa plus-oder-minus 2SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hierbei ist n 38 und k von 1 bis 5, so dass die Quadratwurzel-von-n-minus-k für alle von ihnen etwa 6 ist und daher die Grenzen für die Prüfung der statistischen Signifikanz von Abweichungen von Null ungefähr plus - Oder-minus 26 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den root-mean-squared-Fehler beobachten, der nachfolgend dargestellt wird. Am unteren Rand der Kalkulationstabelle wird die Prognoseformel in die Zukunft durch die bloße Substitution von Prognosen für Istwerte an der Stelle, an der die tatsächlichen Daten ausgehen, ausgedrückt. Wo quotthe futurequot beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellenreferenz eingefügt, die auf die für diesen Zeitraum vorgenommene Prognose hinweist.) Alle anderen Formeln werden einfach von oben kopiert: Beachten Sie, dass die Fehler für Prognosen von Die Zukunft wird alle berechnet, um Null zu sein. Das bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern vielmehr nur die Tatsache, dass für die Zwecke der Vorhersage wir davon ausgehen, dass die zukünftigen Daten die Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen so aus: Mit diesem besonderen Wert von alpha, der für Ein-Perioden-Vorhersagen optimal ist, ist der prognostizierte Trend leicht nach oben gerichtet und spiegelt den lokalen Trend wider, der in den letzten 2 Jahren beobachtet wurde oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist in der Regel eine gute Idee zu sehen, was mit der langfristigen Trendprojektion passiert, wenn Alpha abwechslungsreich ist, denn der Wert, der für kurzfristige Prognosen am besten ist, wird nicht unbedingt der beste Wert für die Vorhersage der weiter entfernten Zukunft sein. Zum Beispiel ist hier das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha, setzt das Modell mehr Gewicht auf ältere Daten in Die Einschätzung des aktuellen Niveaus und der Tendenz sowie die langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend und nicht den jüngsten Aufwärtstrend wider. Diese Tabelle verdeutlicht auch deutlich, wie das Modell mit einem kleineren Wert von Alpha langsamer ist, um auf Quotturning Points in den Daten zu antworten und neigt daher dazu, für viele Perioden in einer Reihe einen Fehler des gleichen Vorzeichens zu machen. Die pro-Schritt-Prognosefehler sind im Durchschnitt größer als die zuvor erhaltenen (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt deutlich den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null. Als Alternative zum Anreißen des Alpha-Wertes, um mehr Konservatismus in langfristige Prognosen einzuführen, wird dem Modell manchmal ein quottrend dämpfungsfaktor hinzugefügt, um den projizierten Trend nach einigen Perioden abzubauen. Der letzte Schritt beim Aufbau des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu berechnen. So sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: erstens Berechnen Sie den RMSE (root-mean-squared error, der nur die Quadratwurzel des MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion von zweimal dem RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Prognose von einer Periode vorausgehend gleich der Punktprognose plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr. Hier ist die RMSE anstatt der Stichproben-Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil es Bias sowie zufällige Variationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte prognose werden dann neu geschrieben. Zusammen mit der Prognose, indem sie mit den entsprechenden saisonalen Indizes multipliziert werden. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste zukünftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95 Konfidenzintervall von 273,2-227,4 218,4 bis 273,2227,4 328,0 liegt. Multiplikation dieser Grenzen durch Dezembers Saisonindex von 68,61. Wir erhalten niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punkt-Prognose von 187,4. Vertrauensgrenzen für Prognosen, die mehr als eine Periode im Vorfeld sind, werden sich im Allgemeinen mit dem Unsicherheitsgrad über das Niveau und den Trend sowie die saisonalen Faktoren erweitern, aber es ist schwierig, sie im Allgemeinen durch analytische Methoden zu berechnen. (Der richtige Weg, um die Vertrauensgrenzen für die LES-Prognose zu berechnen, ist die Verwendung der ARIMA-Theorie, aber die Unsicherheit in den saisonalen Indizes ist eine andere Sache.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose von mehr als einer Periode haben möchten, nehmen Sie alle Quellen von Fehler in Rechnung, Ihre beste Wette ist es, empirische Methoden zu verwenden: Zum Beispiel, um ein Konfidenzintervall für eine 2-Schritt voraus Prognose zu erhalten, könnten Sie eine weitere Spalte auf der Kalkulationstabelle erstellen, um eine 2-Schritt-Prognose für jeden Zeitraum zu berechnen ( Durch bootstrapping der one-step-ahead-prognose). Dann berechnen Sie die RMSE der 2-Schritt-voraus Prognose Fehler und verwenden Sie diese als Grundlage für ein 2-Schritt-voraus Konstanten Intervall.


No comments:

Post a Comment